
3
Data Structures, Tables, and Variables

Data Structures and Tables . 3-1
DriverStatistics Table . 3-2

Statistics Table Field Descriptions 3-3
IOConfigurationStructure . 3-5

Configuration Field Descriptions 3-7
AdapterOptionStructure . 3-9
AESEventStructure . 3-10
TimerDataStructure . 3-11

Global Data Variables . 3-12
MaximumCommDriverDataLength: dword 3-12
PacketSizeNowAvailable: dword 3-12
PacketSizeDriverCanNowHandle: dword 3-12
ServerCommACKTimeOut: dword 3-13

Indirect OS Calls . 3-13
GetNextPacketPointer: dword . 3-13
ReceiveServerCommPointer: dword 3-13
SendServerCommCompletedPointer: dword 3-14

Chapter 3 • Data Structures, Tables, and Variables

Data Structures and Tables

MSL drivers must create and/or maintain several data structures and
tables in order to interface with the NetWare SFT III operating system.
Additional structures are optional and can be defined and used by the
driver as needed.

Most MSL drivers will require the following tables and structures:

• DriverStatistics Table
• IOConfigurationStructure

• AdapterOptionStructure

• AESEventStructure
• TimerDataStructure

A brief description of these tables and structures is provided below.
The following pages then provide detailed information.

The DriverStatistics table contains various diagnostic counters
that the driver must maintain. Each physical adapter will have
a corresponding statistics table.

The IOConfigurationStructure contains information about the
adapter’s hardware configuration. The structure is required
when the driver calls various operating system support routines.

The AdapterOptionStructure allows the driver to provide lists of
valid configuration options available for the adapter’s hardware.
These lists are used by the ParseDriverParameters support
routine to prompt for and validate configuration information
entered from the load command line or interactively from the
operator console. The ParseDriverParameters routine uses the
information to fill out the driver’s IOConfigurationStructure.

The AESEventStructure and TimerDataStructure are used to
schedule callback events to a specified driver routine after a
designated interval. For example, a driver routine could be
scheduled for callback in order to monitor for and recover from
timeout conditions or to perform retry operations at a later time.
The AESEventStructure is used to schedule callbacks to driver
routines that must run at process time. The TimerDataStructure

is used to schedule interrupt time callbacks.

Version 1.00 3 – 1

Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

DriverStatistics Table

The DriverStatistics table is a structure containing various diagnostic
counters used to monitor operations related to the MSL driver or
adapter. The format of the statistics table is strictly defined and is
illustrated below. A description of each field follows the sample.

The table is divided into two general sections: the generic (or standard)
MSL statistics required by NetWare, and the custom statistics defined
by the driver. Your driver must maintain all counters in the table.

The driver must provide external processes (upper layer applications)
access to the statistics table information through the DriverControl
procedure, GetMSLStatistics. When called, this procedure creates a
copy of the statistics table in a buffer provided by the caller. Refer
to Chapter 4, "MSL Driver Procedures," for more information on this
routine.

* DriverStatistics db 0 dup (?)

StatisticsMajorVersion db 01
StatisticsMinorVersion db 00
NumGenericCounters dw (GenericEnd - GenericBegin) / 4
NotSupportedMask dd 00000000000000000011111111111111b

* GenericBegin db 0 dup (?)
TransmitPacketCount dd 0
ReceivePacketCount dd 0
TransmitBurstPacketCount dd 0
MSLRejectPacketCount dd 0
TransmitMsgCount dd 0
ReceiveAckCount dd 0
ReceiveMsgCount dd 0
TransmitAckCount dd 0
TransmitHoldCount dd 0
ReceiveHoldCount dd 0
OSHoldMsgCount dd 0
OSCallBackCount dd 0
OSRejectMsgCount dd 0
ServerCommErrorCount dd 0
ReceiveErrorCount dd 0
TransmitErrorCount dd 0
ReceiveEmergencyCount dd 0
RetryTxCount dd 0

* GenericEnd db 0 dup (?)

NumCustomCounters dw (CustomEnd-CustomBegin)/4
* CustomBegin db 0 dup (?)

CustomCounter1 dd 0
.
.
.

CustomCounterN dd 0
* CustomEnd db 0 dup (?)
* CustomStrings db 0 dup (?)

* These fields are 0 bytes in length and function as labels.
(This syntax is a feature of the Phar Lap assembler.)

3 – 2 Version 1.00

Chapter 3 • Data Structures, Tables, and Variables

Statistics Table Field Descriptions

Offset Name Bytes Description

00h StatisticsMajorVersion 1 This field contains the major version number of
the statistics table. The version number is
controlled by Novell and is currently v1.00;
therefore, 1 is the major version number.

01h StatisticsMinorVersion 1 This field contains the minor version number of
the statistics table. This version number is
controlled by Novell and is currently v1.00;
therefore, 00 is the minor version number.

02h NumGenericCounters 2 This field contains the number of generic
counters present in the statistics table (but not
necessarily supported or used). Currently, this
field should be set to 18 (decimal).

04h NotSupportedMask 4 This field contains a bit mask indicating which
generic counters of the statistics table are
implemented. The 18 most significant bits
correspond to each of the generic counters (with
the most-significant bit matching Transmit-
PacketCount). If the bit is 0, the counter is
supported; if the bit is 1, the counter is not
supported. The remaining 14 bits should be
padded with ones.

08h TransmitPacketCount 4 Total number of message packets successfully
transmitted by this MSL adapter.

0Ch ReceivePacketCount 4 Total number of message packets successfully
received by this MSL adapter.

10h TransmitBurstPacketCount 4 Total number of burst message packets
transmitted by the MSL adapter. Burst packets
are constructed by the DriverBuildSend routine
after DriverISR receives a message acknowledge-
ment. Typically these packets contain multiple
messages but might contain only 1 message.
(see Chapter 4)

14h MSLRejectPacketCount 4 Number of packets MSL rejects.

18h TransmitMsgCount 4 Total number of messages transmitted.

1Ch ReceiveAckCount 4 Total number acknowledgments received.
(should correspond to TransmitMsgCount)

20h ReceiveMsgCount 4 Total number of messages received.

24h TransmitAckCount 4 Total number of acknowledgments transmitted.
(should correspond to ReceiveMsgCount)

28h TransmitHoldCount 4 Total number of hold notifications transmitted.

2Ch ReceiveHoldCount 4 Total number of hold notifications received.

30h OSHoldMsgCount 4 Total number of messages that the OS held off
before accepting. (This is the number of times
ReceiveServerCommPointer returns a status code
of 2 or 3)

Version 1.00 3 – 3

Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

Statistics Table Field Descriptions
-(continued)-

34h OSCallBackCount 4 Total number of times the OS has requested to be
called back after the driver copied the message to
system memory. (This is the number of times
ReceiveServerCommPointer returns a status code
of 1)

38h OSRejectMsgCount 4 Total number of messages rejected (ignored) by
the OS. (This is the number of times Receive-
ServerCommPointer returns a status code of 4)

3Ch ServerCommErrorCount 4 Total number of times the driver called the OS
procedure ServerCommDriverError.

40h ReceiveErrorCount 4 Total number of receive errors.

44h TransmitErrorCount 4 Total number of transmit errors.

48h ReceiveEmergencyCount 4 Total number of emergency notification packets
received from the other server.

4Ch RetryTxCount 4 Number of transmit retries.

50h NumCustomCounters 2 This field contains the number of custom
counters defined by the driver.

52h
.
.
.

CustomCounter1
.
.
.

4
each

These fields contain custom counters that can be
defined for the specific needs of the MSL driver
or adapter design. Each custom counter must
have a corresponding string in the custom strings
area (defined below).

??h CustomStrings ? The CustomStrings area provides diagnostic
strings that correspond to the custom counters.
The first word of the CustomStrings area
contains the size of the area in bytes. Each
string must be null terminated. The table of
strings is terminated with two nulls.

CustomStrings db 0 dup (?)
CustomStringsSize dw EndStrings-CustomStrings

db ’Custom String 1’, 0
db ’Custom String 2’, 0
db ’Custom String 3’, 0
.
.
.
db ’Custom String N’, 0
db 0, 0

EndStrings db 0 dup (?)

3 – 4 Version 1.00

Chapter 3 • Data Structures, Tables, and Variables

IOConfigurationStructure

The IOConfigurationStructure defined by NetWare contains fields
describing information about the adapter’s hardware configuration
including I/O ports, memory decode addresses, interrupts, and DMA
channels. The configuration structure is shown on the following page.
A description of each field follows the example.

The MSL driver uses the structure primarily during initialization to
reserve file server hardware resources.

The following OS support routines require the structure:

• ParseDriverParameters
• RegisterHardwareOptions

• DeRegisterHardwareOptions

• RegisterServerCommDriver

The driver calls ParseDriverParameters to fill in the fields of the
structure using information entered from the load command line and/or
interactively from the operator console. All fields of the structure must
be zeroed prior to calling ParseDriverParameters, unless noted
otherwise. (Chapter 5 describes the ParseDriverParameters support
routine in detail.)

Once the configuration table is filled in, the driver calls Register-

HardwareOptions to reserve the configuration options with the OS. The
driver must not modify any field in the configuration structure after
calling RegisterHardwareOptions.

The driver must provide external processes (upper layer applications)
access to the configuration table information through the DriverControl
procedure, GetMSLConfiguration (see Chapter 4). When called, this
procedure creates a copy of the configuration table in a buffer provided
by the caller.

Version 1.00 3 – 5

Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

IOConfigurationStructure struc

CLink dd ?
CFlags dw ?

* CSlot dw ?

* CIOPort0 dw ?
* CIOLength0 dw ?
* CIOPort1 dw ?
* CIOLength1 dw ?

* CMemoryDecode0 dd ?
* CMemoryLength0 dw ?
* CMemoryDecode1 dd ?
* CMemoryLength1 dw ?

* CInterrupt0 db ?
* CInterrupt1 db ?

* CDMAUsage0 db ?
* CDMAUsage1 db ?

CIOResourceTag dd ?

CConfiguration dd ?
CCommandString dd ?
CLogicalName db 18 dup (?)
CIOReserved db 16 dup (?)

IOConfigurationStructure ends

DriverConfiguration IOConfigurationStructure
<0,0,0,
0,0,0,0,
0,0,0,0,
0FFh,0FFh,
0FFh,0FFh,
0,0,0,0,0>

* These values are configurable from the command line and/or interactively from the
server console at load time.

3 – 6 Version 1.00

Chapter 3 • Data Structures, Tables, and Variables

Configuration Field Descriptions

Offset Name Bytes Description

00h CLink 4 Reserved by NetWare. Drivers should not change

this field.

04h CFlags (sharing flags) 2 Setting these bits indicates that the MSL adapter

can share I/O ports, memory ranges, interrupts,

and/or DMA channels. (Note: Set bit 0 to 0.)

This field must be initialized before calling the

ParseDriverParameters routine. Set this field to

zero unless the hardware options are shared on all

the adapters using this driver. For shared I/O

device addresses, interrupts, etc., place the

following value in this field:

IODetached 01h
IOSharablePort0Bit 02h
IOSharablePort1Bit 04h
IOSharableMem0Bit 08h
IOSharableMem1Bit 10h
IOSharableInt0Bit 20h
IOSharableInt1Bit 40h
IOSharableDMA0Bit 80h
IOSharableDMA1Bit 100h

06h CSlot 2 If an MSL adapter is running in an MCA or EISA

machine, this field holds the slot number where

the adapter is installed. (zero if not used)

08h CIOPort0 2 This field contains the primary base I/O port for

the MSL adapter. (zero if not used)

0Ah CIOLength0 2 This field contains the number of I/O ports starting

at CIOPort0. (zero if not used)

0Ch CIOPort1 2 This field contains the secondary base I/O port for

the MSL adapter. (zero if not used)

0Eh CIOLength1 2 This field contains the number of I/O ports starting

at CIOPort1. (zero if not used)

10h CMemoryDecode0 4 This field contains the absolute address of primary

shared memory used by the MSL adapter.

(zero if not used)

14h CMemoryLength0 2 This field contains the amount of memory (in

paragraphs) that the MSL adapter uses, starting

at CMemoryDecode0. (zero if not used)

16h CMemoryDecode1 4 This field contains the absolute address of

secondary shared memory used by the adapter.

(zero if not used)

Version 1.00 3 – 7

Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

Configuration Field Descriptions
-(continued)-

1Ah CMemoryLength1 2 This field contains the amount of memory (in

paragraphs) that the MSL adapter uses, starting

at CMemoryDecode1. (zero if not used)

1Ch CInterrupt0 1 This field contains the primary interrupt

number used by the adapter. (FFh if not used)

1Dh CInterrupt1 1 This field contains the secondary interrupt number

used by the adapter. (FFh if not used)

1Eh CDMAUsage0 1 This field contains the primary DMA channel

used by the MSL adapter. (FFh if not used)

1Fh CDMAUsage1 1 This field contains the secondary DMA channel

used by the MSL adapter. (FFh if not used)

20h CIOResourceTag 4 This field contains the resource tag with a

IORegistrationSignature acquired by the driver

during initialization. (see AllocateResourceTag)

24h CConfiguration 4 Reserved. MSLs should not use this field.

28h CCommandString 4 If the driver needs to append something to the

command line or replace the default command line

in the AUTOEXEC.NCF file for the I/O Engine

(IOAUTO.NCF), this field will contain a long

pointer to the new or additional command line

string. If the driver does not use this option, the

field must be cleared. If this field is used, then

bits 9 and 10 of CFlags need to be set

appropriately.

2Ch CLogicalName 18 MSLs should not use this field. This field contains

the logical name of the MSL driver, if it is given

one at load time.

For example: load <driver> name="________"

3Eh CIOReserved 16 Reserved for the MSL’s use.

3 – 8 Version 1.00

Chapter 3 • Data Structures, Tables, and Variables

AdapterOptionStructure

The AdapterOptionStructure is defined in the MSL.INC file and is
shown below. In order to use the NetWare support routine ParseDriver-
Parameters to parse the load command line, an MSL driver must
maintain a single instance (or more if more than one adapter type is
supported by the same driver) of this structure.

The AdapterOptionStructure serves as a template defining the available
choices for various adapter configuration options. ParseDriver-

Parameters uses this template to parse the load command line, query
the operator for any required options not found on the command line,
validate the selected values, and fill in the associated fields in the
IOConfigurationStructure.

AdapterOptionStructure struc
IOSlot dd ?
IOPort0 dd ?
IOLength0 dd ?
IOPort1 dd ?
IOLength1 dd ?
MemoryDecode0 dd ?
MemoryLength0 dd ?
MemoryDecode1 dd ?
MemoryLength1 dd ?
Interrupt0 dd ?
Interrupt1 dd ?
DMA0 dd ?
DMA1 dd ?

AdapterOptionStructure ends

Each field in the structure is a pointer to a length-preceded list of
allowable options for that field. The first option in the list is used as
the default value. Each list assumes the following form:

List dd n ;number of entries
dd entry1 ;first (default) value
dd entry2
.
.
dd entryn ;last available value

If entries are not used in the AdapterOptionStructure, the pointer to the
associated list should be set to zero. The fields are explained in detail
under the IOConfigurationStructure description in the previous section.

Refer to the ParseDriverParameters description in Chapter 5, "NetWare
SFT III Support Routines," for additional information on the use of this
structure.

Version 1.00 3 – 9

Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

AESEventStructure

The AESEventStructure is required to schedule process level callbacks

to a specified driver routine after a designated interval. For example,
a driver routine could be scheduled for callback in order to monitor for
and recover from transmit timeout conditions, or to perform retry
operations at a later time.

The OS support routines, ScheduleSleepAESProcessEvent and Schedule-
NoSleepAESProcessEvent described in Chapter 5, are used to schedule
the callback events for either blocking or non-blocking process level
driver routines.

AESEventStructure struc
AESLink dd ?
AESWakeUpDelayAmount dd ?
AESWakeUpTime dd ?
AESProcessToCall dd ?
AESRTag dd ?
AESOldLink dd ?
MessageTimeOutTime dd ? ;optional
AdapterTimeOutTime dd ? ;optional

AESEventStructure ends

Field Name Description

AESLink Used internally by the NetWare OS; do not modify this field.

AESWakeUpDelayAmount The amount of time in system clock ticks (1 tick ≈ 1/18 second)

before the callback procedure is invoked. Generally, this

interval should be small enough to provide reasonable recovery

time, but not so small as to affect overall server performance.

AESWakeUpTime Used internally by the NetWare OS; do not modify this field.

AESProcessToCall A pointer to the routine that will be called once for each

ScheduleAESProcessEvent call.

AESRTag Resource tag with an AESProcessSignature obtained by the MSL

driver during initialization. This allows the OS to track the

AES resource.

AESOldLink Maintained for backward compatibility.

MessageTimeOutTime

(optional)

Set this field to the value of ServerCommACKTimeOut when

beginning a message timeout sequence. This value is the

maximum time (in ticks) you should wait for the other server’s

acknowledgment before calling ServerCommDriverError.

AdapterTimeOutTime

(optional)

This field is used for adapters that support the transmit

complete feature. When the driver initiates a transmission, it

should set this value to the maximum time (in ticks) to wait for

that transmission to complete. This can be used to detect a

“dead” adapter.

3 – 10 Version 1.00

Chapter 3 • Data Structures, Tables, and Variables

TimerDataStructure

The TimerDataStructure is required to schedule interrupt level callbacks

to a specified driver routine after a designated interval. The OS
support routine used to schedule the callback is ScheduleInterrupt-

TimeCallBack. This routine adds an event to the list of events that will
be called by the timer tick interrupt handler.

TimerDataStructure struc
TLink dd ? ;reserved
TCallBackProcedure dd ?
TCallBackEBXParameter dd ?
TCallBackWaitTime dd ?
TResourceTag dd ?
TWorkWakeUpTime dd ? ;reserved
TSignature dd ? ;reserved

TimerDataStructure ends

The reserved fields of this structure are used internally by the NetWare
OS and should not be modified by the driver. The remaining fields are
filled in by the driver as follows:

Field Name Description

TCallBackProcedure Pointer to the procedure to be called by the timer interrupt

handler. When the procedure is called, interrupts are disabled.

TCallBackEBXParameter The value EBX should contain when the call back procedure is

invoked.

TCallBackWaitTime The amount of time (in ticks) before the callback procedure is

invoked.

TResourceTag Resource tag with a TimerSignature acquired by the driver for

interrupt time callbacks. (see AllocateResourceTag)

Note: The four fields described above are not changed by the operating
system. If the driver reschedules another callback, it does not need to
reinitialize these fields.

Version 1.00 3 – 11

Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

Global Data Variables

This section describes the global data variables that have special
meaning for MSL drivers. All variables described in this section are
external to the driver. The driver will either need to initialize,
maintain, or access these variables during the course of its operation.

MaximumCommDriverDataLength: dword

The driver must set this variable during initialization so that the
operating system knows the maximum message size (not including the
message header) that the driver can transmit.

PacketSizeNowAvailable: dword

The OS maintains this variable to let the driver know the size of the
next message (not including the message header) that the OS has
queued for transmission. This value may be positive, zero, or negative.
A negative value indicates that the OS has no messages queued for
transmission. A value of zero indicates a message header only with no
message data.

PacketSizeDriverCanNowHandle: dword

The driver maintains this variable to let the OS know whether it can
call the DriverSend or DriverBuildSend routines to send the next
message. This value may be positive, zero, or negative. A negative
value indicates the driver can send no more messages (typically until
an acknowledgement is received from the other server for a previous
message). A value of zero indicates the driver can send a message

header only with no message data.

There are several cases when the OS does not check this variable before
calling the driver to send a message:

Case 1. When the MSL driver initially registers with the mirrored

server interface by calling RegisterServerCommDriver, the OS
assumes that the driver is ready to send a message.

Case 2. When the OS sends an initial "I’m alive" message and

receives an acknowledgement, it will send the next message in the
initial link protocol between the two servers without checking this
variable. The OS assumes that if the MSL driver has received an
acknowledgement from the initial message, it should be ready to
transmit another message.

3 – 12 Version 1.00

Chapter 3 • Data Structures, Tables, and Variables

Case 3. The OS sends an initial "I’m alive" message and times out

waiting for the acknowledgement. The OS then switches into a
"listening" state. Upon reception of an "I’m alive" message, the OS
will send a reply message without checking this variable. The OS
assumes that if the first message has timed out, the MSL should be
ready to transmit another message.

ServerCommACKTimeOut: dword

The OS sets this variable to the maximum time in ticks the driver
should wait for a message acknowledgement. The MSL driver uses this
value in conjunction with the DriverTimeout routine to determine if the
mirrored server-to-server link is still active.

When the MSL driver sends a message, it initializes a counter to the
value of ServerCommACKTimeOut. The DriverTimeout routine (which
is called back at 1 tick intervals) will decrement the counter. If the
value becomes zero before the acknowledgement is received, the timeout
routine should notify the OS that the link between the mirrored servers
is no longer valid by calling the ServerCommDriverError routine.

The OS may dynamically change the ServerCommACKTimeOut value;
therefore, each time a new message timeout is started, the counter
should be reinitialized to the current ServerCommACKTimeOut value.

Indirect OS Calls

The following global variables are defined and maintained by the
NetWare SFT III operating system. These variables contain pointers
to specific OS procedures that the MSL driver must access. This section
provides a brief description of these indirect calls. Each procedure is
then described in detail in Chapter 5.

GetNextPacketPointer: dword

This variable contains a pointer to the current OS procedure used to get
the next message (or group of messages) that the OS has queued for
transmission. The MSL driver must call this procedure after it receives
an acknowledgement. This procedure initiates a possible multi-message
packet building sequence.

ReceiveServerCommPointer: dword

This variable contains a pointer to the current OS procedure used to
notify the OS when a message is received from the other server. This

Version 1.00 3 – 13

Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

procedure then returns a completion code indicating to the driver what
action to take for the message.

SendServerCommCompletedPointer: dword

This variable contains a pointer to the current OS procedure used to
notify the OS when any message acknowledgements are received from
the other server.

3 – 14 Version 1.00

